MEG 795 Special Topics: Energy Methods II

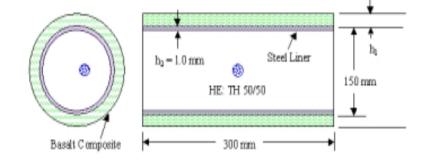
Simulation of Blast Loaded Composite Pressure Vessel Using LS-DYNA

(Open Cylinder and AT595 Container Model) (Type-1 Lagrange Conwep)

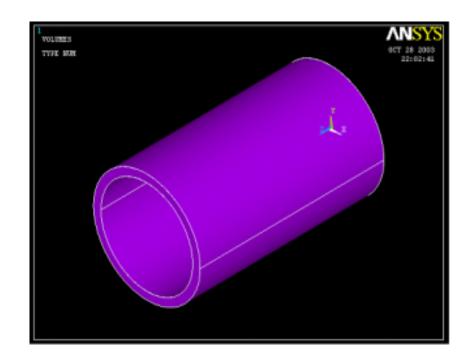
Kiran Kumar Pusthay

Objectives

- The primary objective of this study is to minimize the effect of impact blast in pressure vessels and safe transportation of the high explosive materials.
- To study the response of blast loaded composite cylinder with a inner steel liner, and to compare the results from FEA with the experimental results.

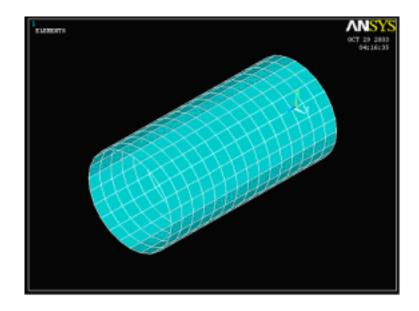

The parameters of interest

- Peak Tensile Strain in the circumferential direction: $\boldsymbol{\varepsilon}_1$
- Peak Compressive Strain in the circumferential direction: ϵ_2
- The time to reach the peak tensile strain in the circumferential direction: τ_1
- Peak Tensile and Compressive Strain in the longitudinal direction: ϵ_3
- Radial oscillation fundamental tone period: T
- The peak circumferential strain rate: $d\varepsilon_1/d\tau$

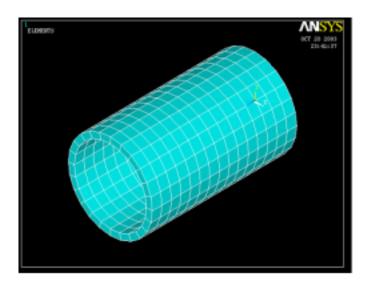


Modeling

- The model, open ended cylinder is modeled using Ansys.
- The outer diameter of the cylinder is 86.1mm and the inner diameter is 75 mm
- There is inner steel liner of 1 mm thickness

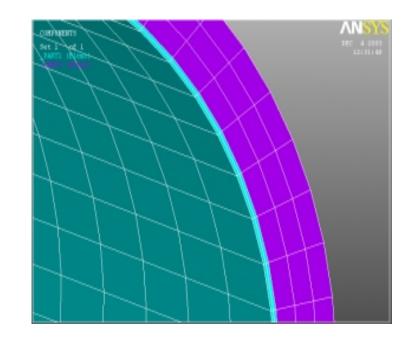

Ansys Model

Meshing Technique


- The model was simulated for two different environments.
- First with composite cylinder meshed as solid elements and inner steel liner as shell elements.
- Second, with both composite cylinder and inner steel liner as solid elements.

Meshed Model

The model showing meshing of shell elements


Meshed Model

Meshed model showing uniform square grid containing both shell and solid elements

Improved Mesh

- The mesh is remeshed for more elements in the thickness direction, to see the impact of blast on the outer cylinder.
- There are three elements in the thickness direction.

Material properties

Element Type	Material Models	Material Properties
Solid 164 (outer composite cylinder)	Linear Orthotropic	$E_x = 15.44 \text{ GPa}$ $E_z \text{ (thickness direction)} = 14 \text{ GPa}$ $E_y = 48.54 \text{ GPa}$ $G_{xy} = 6.645 \text{ GPa}$ $G_{yz} = 3 \text{ GPa}$ $G_{xz} = 3 \text{ GPa}$ $V_{xy} = 0.098$ $V_{xz} = 8_{yz} = 0.3$ Density = 2.06 g/cm ³
Shell 163(Inner Steel Liner)	Linear Isotropic	Density = 7850 kg/m³ E=200Gpa ν=0.3

NOTE:

The SI units were used consistently throughout the input deck: Length [m], Mass [kg], Time [ms], Density [kg/m³], Modulus [GPa] and Strength [GPa]

Control cards For Environment - 1

- In order to model the blast effects in Lsdyna, conwep function is used.
- Following three control cards are essential to invoke conwep function:Load__BLAST ,LOAD_SEGMENT or LOAD_SHELL or and LOAD_SEGMENT_SET.

Control cards (contd.)

```
*LOAD BLAST
$ WGT XBO YBO ZBO TBO IUNIT ISURF
$---+---5-----6-----7-
---+---8
       n
                   0.15
 0.05198
*LOAD SHELL SET
S(Defines which shell to apply *LOAD BLAST)
---+---R
   SID LCID SF
                    AT
   999 -2 -1
*SET SHELL LIST GENERATE
$---+---5-----6-----7-
---+----8
   SID
       DA1
              DA2
                    DA3
                          DA4
   999
    1
         768
```

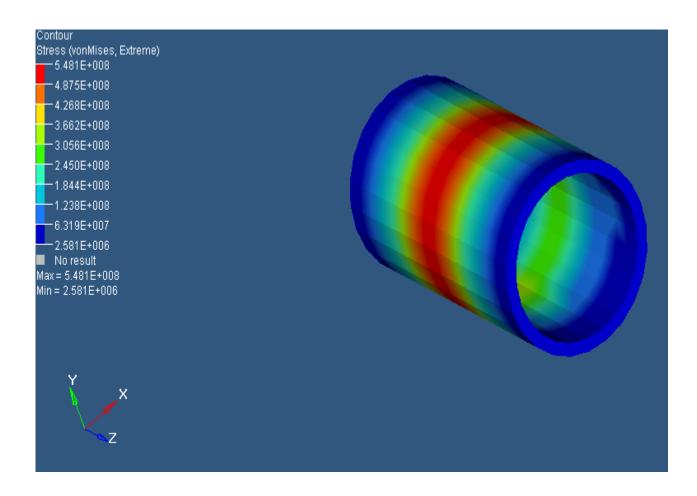
Control Cards For Environment -2

 The control cards used in case of both solid elements are LOAD_BLAST, LOAD_ SEGMENT and LOAD_SEGMENT_SET.

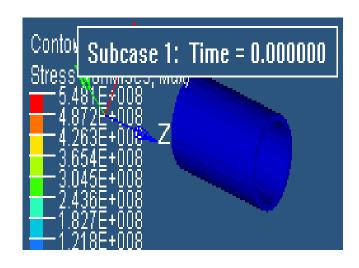
 LOAD_SEGMENT is obtained by applying pressure on the surface on which the blast will be created, this is done in hyper mesh.

Load Segment Denotes the segment on which pressure is applied.

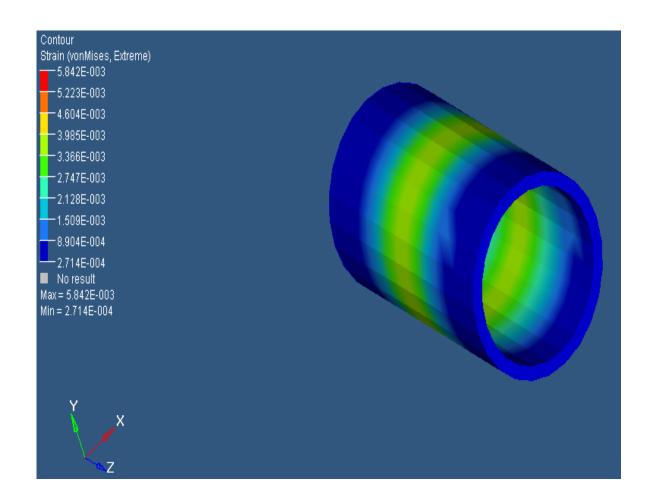
*LOAI)_segmen	JT					
	-2	-1.000	0.000	2	1	15	16
	-2	-1.000	0.000	2028	2027	1	2
	-	-	-	-	-	-	-
	_	<u>-</u>	_	_	_	_	_
	-	-	-	-	-	-	-
	-2	-1.000	0.000	784	783	2000	1999
	-2	-1.000	0.000	2055	784	1999	1953

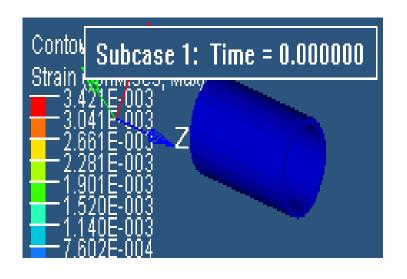

Blast Card

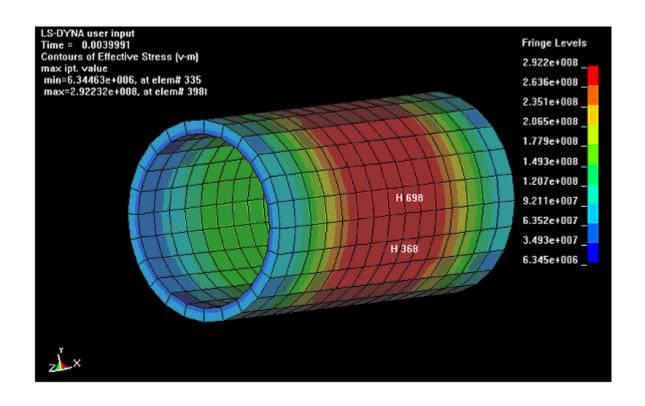
*L(DAD_BLAST						
\$	WGT	XB0	YB0	ZB0	TB0	IUNIT	ISURF
	.05198	0	0	0.15	0	2	2
\$	CFM	CFL	CFT	CFP			

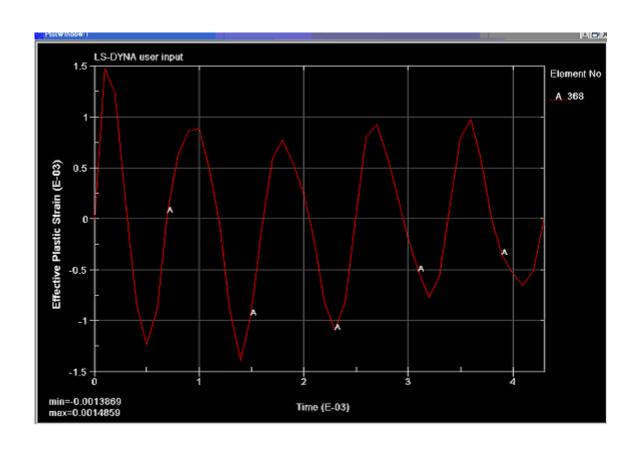

Blast Material

- The actual blast material used is a combination of HE & TH
- TNT equivalent of HE is =Correction factor*mass of HE
- Correction Factor used =1.13
- Mass of HE = 46.0 grams

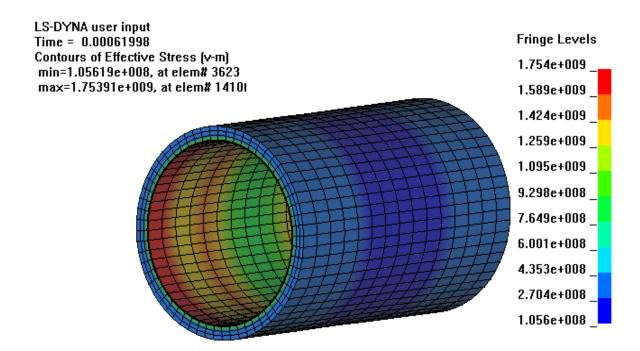

Stress Contours Enivronment-1


Stress Contours Enivronment-1

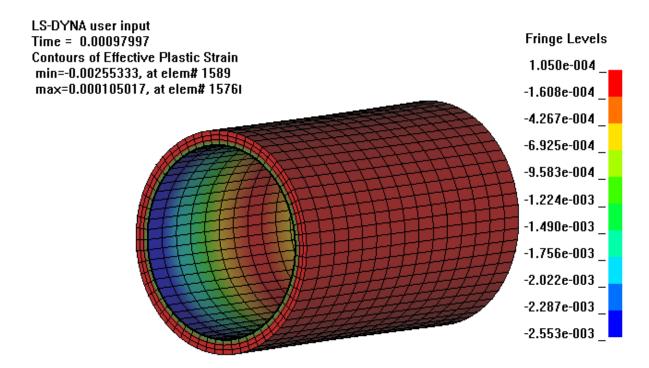

Strain Contours Enivronment-1


Strain Contours Enivronment-1

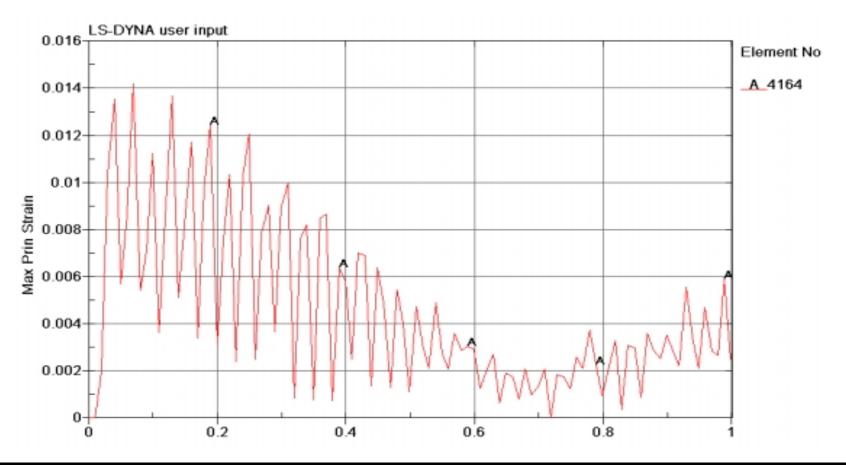
Effective Strain Enivronment-1


Strain Vs Time

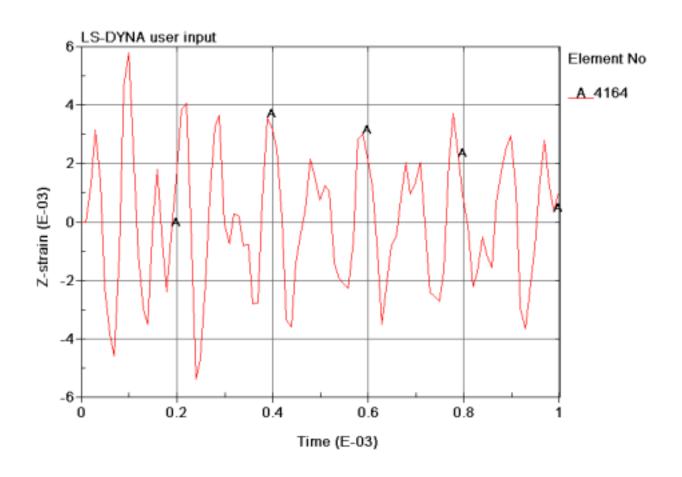
Results Enivronment-1


Test Parameters	Experimental Results	Ls-dyna Results
Comp. Thick. h. [mm	6.6	6.6
	46.0	51.98(with scale factor =
M _{HE} [g]		1.13)
Peak Tensile		0.44
Hoop Strain	2.9	
ε _ι [%]		
Time to		99.27
Reach ε₁:	432	
$\tau_{\rm L}[\mu_{\rm S}]$		
Peak Comp.		-0.139
Hoop Strain	-1.4	
دِ [%]		
Peak Long.	1.85	3.88
Strain,	1.85	
ε, [%]		400.17
Period, T [#s]	112	400.17
Max. Hoop S train Rate [1/s]	891	769

Stress contours



Plastic strain Environment-2


The plot for calculating peak Hoop tensile strain.

Results Enivronment-2

Test Parameters	Experimental Results	Ls-dyna Results (From Project 2,Refined Mesh)
Comp . Thick. h _l [mm	6.1	6.1
М _{не} [g]	46.0	51.98(with scale factor = 1.13)
Peak Tensile Hoop Strain ε ₁ [%]	2.9	1.4231
Time to Reach ? ₁ : ε ₁ [? s]	43.2	69
Peak Comp . Hoop Strain ε [%]	-1.4	-1.6003
Peak Long. Strain, ε ₃ [%]	1.85	0.584
Period, T [μs]	112	284
Max. Hoop Strain Rate [1/s]	891	662

Plot for peak longitudinal strain

Conclusions

- The results from the mesh with one component as solid elements and other as shell elements had huge deviations from experimental results.
- The mesh with both components as solid elements(Enivronment-2) gave more close results to experiments.

Conclusions cont'd

- Comparison of the experimental data and the computational data shows there is some discrepancies in the magnitude of the parameters under consideration.
- The reasons for such variation in results may be attributed to the discrepancy of conwep function in interpreting the TNT equivalent of HE.